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QUANTITATIVE PARAMETERS BY THERMOANALYTICAL METHODS

H. Anderson

DEPARTMENT OF CHEMISTRY, E. M-ARNDT UNIVERSITY OF GREIFSWALD, G.D.R.

The conditions and premises of the kinetic evaluation of thermoanalytical curves on the basis of
chemical Kinetics are demonstrated, and the limits of their availability are pointed out. For reac-
tions with an unclear structural and chemical course. some appropriate definitions of terms are
proposed.

The possibilities of the use of the inflection points of the reaction rate versus fime curve are
presented. New methods of determination of kinetic parameters are described, including the ratio
of the degrees of reaction x, the ratio of the reaction rates x and the ratio of the tangent slopes
X at these points.

A century after the first application of a thermoanalytical technique by
Le Chatelier, some problems of thermal analysis remain. One point of
controversy relates to the quantitative evaluation of nonisothermal ex-
periments. At present, it seems doubtful whether the accuracy of isothermal
investigations will ever be attained, and Benoit et al. [1] conclude that before
a quantitative non-isothermal investigation can be evaluated an isothermal-
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134 ANDERSON: QUANTITATIVE PARAMETERS

measurement has to be performed, which confirms the constancy of reaction
order in this temperature range. Here, TG results will be valued much more
highly than those of DTA, although the one method cannot be substituted
by the other.

Kinetic findings from TG and DTA

As concerns the methods used for kinetic evaluation, we distinguish dif-
ferential and integral methods on the one hand, and difference and single
point methods on the other. Increasingly, computers are connected with the
thermoanalytical instrument or employed off-line to decide on the eva-
luation equation. Some years ago we compared 9 different methods for
kinetic parameter calculation on the basis of computerized TG/DTA model
curves [2].

This attempt showed that several methods are mathematical approximations
with a tendency to gross errors. Others methods are mathematically exact,
but supersensitive to small deviations from the theoretical model curves, and
hence to any experimental uncertainty. Incidentally, methods which take
into account only a single point are much more subject to mistakes than
those which consider the total information content of the curve. Mathemat-
ical error-equalizing by means of least squares will lead to satisfactory
success only when the complete curve is included. Because of the lower ex-
pense, the evaluation method should in every case be more than one hundred
times more precise than the measurement [3]. Today we possess methods
of kinetic evaluation for all situations. The choice of method should cor-
respond to the experimental level employed. The main problem, however,
is still the acceptance of a uniform one-step mechanism which is assumed to
control the rate of the process or reaction considered. In most TA experi-
ments with solid-state materials, this assumption does not correspond to the
real situation. At this point we need independent investigations supplemen-
tary to TA, which enable us to decide on the rate control in any phase of

the reaction.
Parameters defined by the kinetics of chemical reactions are meaningless if

the chemical background has not been clarified or if more than one process
step — consecutive or simultaneous — makes a substantial contribution to
the recorded TA curve. Before computerizing the experimental data at all,
we should check the fulfilment of certain questions, irrespectively of
whether we have worked isothermally or non-isothermally:
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1. What do we know about the reproducibility of the total experimental
performance and the measuring accuracy?
2. What intermediates and final products were detected? — Chemical analysis!
3. What changes of phases and structure were observed?
— Physical analysis!
4. What physical event or chemical reaction should be the pace-maker?
5. What mechanism could be proposed for the pace-maker? Which adequate
mathematical description is justified?
Besides scientifically based model equations, formal mathematical descrip-
tions are used as an expression of the empirical applied research work. In
these cases the terms of reaction kinetics should be avoided. For this reason,
we propose the use of the-following definitions of quantitative terms.

The process under investigation is structurally and chemically

clarified partially or totally unclear
Reaction rate dx/d¢ Process rate, e. g. dm/d¢
Activation energy E in Characteristic temperature
E/RT Ain A/T

Frequency factor %, Preexponential factor Z
Order of reaction n Process exponent v

In this way the confusion at present prevailing in the literature and in some
disputes will disappear.

Special information deduced from the inflection points of the TA curve

Any TG curve contains some characteristic positions with distinguished
values of the reaction rate. The derivative curve (DTG) shows a maximum
(rm) with the greatest reaction rate and two points where the slope reaches
an extremum, i.e. the first and second inflection points. On the other hand,
the parameters of the positions of the inflection points are calculated on the
basis of model curves obtained by integration of the differential equation
corresponding to a linear or non-linear heating rate [4]:

?l_z‘T = Qp T? e.g. b= 0 linear (D
b =1 exponential

b = 2 hyperbolic
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The slopes of the tangents at the inflection points lead to the shape index for
the reaction rate curve S, for example for DTG, and to Sy for the DTA
curve.

=(d2x/dt2)1. Sy = (dAT/dt), (2)
¥ T (d%x/de?), (dAT/d1),
In the case of S, we found [5] a relation which contains the square root of
the reaction order (see Kissinger [6], Heek [7], Koch [8]:

Sep =ppn2+ g (3)

As the exponent b varies from 0 to 2, the coefficients p and g will change.
For constant b, with the exception of hyperbolic heating, the coefficients
depend weakly on the logarithm of the frequency factor. On the premises of
Arrhenius statement about the reaction rates of simple chemical reactions, a
consideration of the third derivatives with respect to time will yield an ex:
pression of the shape index Syp, according to Eq. 6:

&% _ ko exp(~E/RT)(Go—)" “
inl(es =) o =" (37018 (5)
Sep = (co—x1)(B—0y )(B—3+ay) (-T_Z)w'_b) o

* T o1)B+m)B-3—0) T,

with oy = [9-4(2—1/n)(1—(2—b) RT1/E)1/?
B=1202-1/n)

If b = 2, i.€. for hyperbolic heating, we get a shortened formula (Eq. 7), in
which «is only a function of the reaction order:

s (co—x1)(B~0)(B-3+a) _ co—x
X, (co—x2)BFa)(f—3—a) co—x,

'FI'FZ (7)

According to this relation, the shape index is given by # and by the con-
centrations at the inflection points, independently of the activation param-
eters. The new method of kinetic evaluation involves the following steps.
First, we calculate the reaction order # with the help of Eq. (3) by putting
in the slopes of the tangents at both inflection points. Secondly, we apply
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Formula (5) to the first inflection point and introduce x; and (dx/d¢), to get
the activation energy E. When we do the same at the second inflection point,
the result in £ must agree with that above. In this way we test the consist-
ency of experiment and theoretical model. In a third step, we determine the
frequency factor with the help of Eq. 4.

The essential advantage becomes manifest whenever we search not for any
values of reaction order, but only for integral or selected fractional values.
In such cases the claims on the experimental accuracy corresponding to ¥ =
d2x/df? are not too high. It is well known that determination of x and % is
less difficuit.

Nevertheless, a satisfactory kinetic evaluation by this method is practicable
only if the experimental technique is on a high level. Therefore, the pro-
posed procedure turns out to be a relatively sensitive indicator of experimen-
tal uncertainties or of a bad choice of the equation of the reaction model
which misrepresents the real process. In most of these cases, this suggests
complex reactions [9]. A similar proceeding is allowed to evaluate TA curves
under linear or exponential heating or for any values of b. For this we
additionally need the temperatures T'; and T, of the inflection points and an
estimated £ value in Eq. 6. In order to improve the accuracy, the evaluation
should be repeated with the approximately determined E value from the first
course. Finally, we attain the same quality of results as for the hyperbolic
heating programme.

Further conclusions from S, R

From the modelled thermoanalytical curves, we derived the shape index for
hyperbolic heating in the form of Eqs 3 and 7:

Sy, =~1.182 n¥? + 0.664 (3a)

Sx,» F1 and F, are exclusively dependent on the reaction order. After a
simple transposition of Eq. 7, an important proposition arises. Now a
summary of the three rations at the inflection points, i.e. of the unreacted

parts (c,—x), of the reaction rates ¥ and the reaction accelerations or
retardations ¥, may be given:

Co—X1 _
G x, — P (8a—c)

X1 /%, =g n)F, =¥ (n)
%1/%; =9 (n)F, F, =¥ (n)yF, :Sx,
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Table 1 Values of ¢, ¥, S, as function of reaction order

X, Sy Xy Sy Co—X,
—Ia ~Sy = — — _——= = ———
& £ F =5 F,= % FF tox
0.5 0 0 0.171 oo oo
0.6 0.0400668 8.535935'1072 0.250798 2.93815 73.3312
2.3 0.0627463 0.138998 0.300 2.15830 34.3973
0.8 0.1010386 0.240408 0.39232 1.63188 16.1511
1.0 0.145898 0.381965 0.517 1.35352 9.2772
133 0.2 0.600 0.700 1.16666 5.8333
1.5 0.220802 0.703465 0.782424 1.11224 5.0372
2.0 0.267949 1.000 1.000 1.000 3.7320
2.5 0.300827 1.283195 1.20332 0.93775 3.1172
3.0 0.325247 1.558256 1.382 0.88688 2.7268
5 0.381966 2.618035 1.976796 0.75506 1.9767
10 0.434363 5.175201 3.070649 0.59335 1.3661
oo 0.500 oo oo oo 0,5 1.0
‘I,(n) P(n)
3

| 1 ] 1 ) 1
0 0 1 2 3 4 5n

Fig. 1 Shapeindex S, and coefficients ¢ and ¥ as functions of reaction order n

Table 1 shows discrete values of ¢, ¥ and Sy, as functions of the reaction
order above n = 0.5. The S, values for n = 2/3, 4/3, 2 and 5 are note-
worthy, as are the ¥ values for # = 4/3 and 2. The ¢ value of about 2.0 for
n= 5 is equal to that of S, because F,F, = —1. Figure 1 depicts the
dependences of the functions ¢, ¥ and —S,, on the reaction order. While
the first and the second decrease with increasing 7, the negative Sy, value
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rises continuously. The ¥ curve reveals that with increasing reaction order
n the ratio of the reaction rates at the inflection points, X, /%, , decreases.
Above n = 2, the reaction rate at the second inflection point is absolutely
larger than that at the first.

Another interesting observation is the fact that for n =2 not only the rates
of reaction at both inflection points are equal, but also their derivatives
with respect to time, i.e. the acceleration at point 1 and the retardation at
point 2. In Fig. 1 we see that the parameter W is very insensitive to changes
in z in the region above n = 2. In contrast to this tendency; both ¥ and ¢
are much more sensitive in the lower region, especially for n <1. Therefore,
we shall find the optimal application of the three parameters together in that
range in which most practical cases occur. This opens a way to a new method
of estimating the activation energy. After the determination of the reaction
order with the help of Eq. 3, e.g. with a value 2, we formulate

¥ =1 =cexp [-E/R(1/T,—1/T,)] ¢*
9
E=121.899 LT, J-mole™

2Ty

For this we only need the temperatures of both inflection points. This pro-
cedure may be generalized for any reaction order. Since the ¢ value contains
the integrated TA curve from the start to the respective inflection points,
this evaluation method is not to be put on a par with those which include
only one item of information about a selected point. In principle, all these
considerations are transferable tolinear and exponential heating programmes
if one is ready to accept a slight loss of accuracy, which can be compensated
for by weak corrections, however. Figure 2 shows a generalized thermo-
analytical curve X vs. ¢ or T, e.g. a DTG curve. Since not any reaction order
is concerned and only certain values of n are to be taken into account, e.g.
an integer or selected vulgar fractions, it is allowed to use some advantages
to secure a good quality of the evaluated reaction parameters. The arrows
in Fig. 2 at the first and the second inflection points demonstrate how both
points are shifted, if one of them is fixed inaccurately. For deviations from
the correct inflection points, the three characteristic functions show dif-

ferent behaviour in so far as the reaction order can be supposed to be
constant.
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Fig. 2 Influence of errors from the first on the second inflection point

1. ¢ (n) remains constant only when both points move to the right or to the
left. An increase of x; can be compensated for only by an increase of x,.

2. ¥ (n) remains constant only when both points move towards the peak or
outwards.

3. S, remains constant only when, with diminution of the slope of the first
inflection tangent the slope of the second is also reduced. This can be
effected, however, by shifting in both directions, starting from one
inflection point, i.e. when the shape index S, is correct, the pair of
inflection points is not necessarily the right one, because other pairs of
tangents could form the same ratio S.

However, if the functions ¢, ¥ and S, calculated from a TA curve cor-
respond to the same value of the reaction order, then experiment and
evaluation are excellent. On the other hand, all calculations acquire more
certainty when the above three functions are applied jointly. Consequently,
the results of the respective evaluation method can be improved.
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Zusammenfassung — Bedingungen und Voraussetzungen der Kinetischen Auswertung thermoanalytischer
Meiftkurven auf der Basis der chemischen Kinetik werden dargestellt, gleichzeilig wird auf die Grenzen
ihrer Gilltigkeit hingewiesen. Fiir Reaktionen mit unklarem chemischem oder struktureltem Ablauf
werden geeignete neue Bezeichnungen definiert.

Die Méglichkeit zur Verwendung der Wendepunkte ‘der Kurve Reaktionsgeschwindigkeit gegen Zeit
vorgestellt. Neue Methoden werden beschrieben, die zur Bestimmung kinetischer Parameter das Ver-
hiitnis der Umsitze x,/x,, das Verhiltnis der Reaktionsgeschwindigkeiten x,/x,, und das Verhiltnis
der Tangentensteigungen %, /¥, an den Wendepunkien verwenden.

PE3IOME — [Noka3zalbl YCIIOBHA U IPEONOCLUIKH KMHETHYECKOH OLEHKH TePMOaHAIUTHYECKHX KPHBBIX
HAa OCHOBAHHH HAHHLIX XHMHJECKO KuHeTUKH. OTMeueHsl Takke Ipeenbl MX Npuronsocty. Jnsa peak-
IMA C HEACHBIM CTPYKTIYDHBIM H XHMHUYECKUM XOIOM OLUIHM IIPDEIJIOMKEeHBI HEKOTOPbie TIOHXOAALINe
onpeneneHua TepMUHEOB. [I0Ka3aHa BO3MOXKHOCTE HCIIO/IL3CBAHKA TOUEK HHMIeKCHMM HA KPUBOH B KO-
OpIMHATAX CKOPOCTh peakuuy — ppems. ONMCaHE! HOBbIE METONB! ONpeleseHus KHHEeTHUeCKHX napa-
MeTPOB, BIJTIOYAA OTHOLIEHUe CTereHeil peakumu (x), OTHOLIEHHe CKOPOCTei peakimu (X} u oTHoue-
HHE TAHMeHCOB HAKJIOHA (X) B 9THUX TOYKaX.
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